314 research outputs found

    Appendiceal abscess in a giant left-sided inguinoscrotal hernia: a rare case of Amyand hernia

    Get PDF
    The hernia of Amyand is an inguinal hernia containing the appendix in the sac. It is a rare pathology often diagnosed only intra-operatively. We report a case even more rare of a giant left-sided inguinoscrotal Amyand hernia with appendiceal abscess without clinical findings of incarceration/strangulation, occlusion, perforation, or acute scrotum and with the presence in the sac of the caecum and other anatomical structures (last ileal loops, bladder and omentum). The 68-years-old man patient successfully underwent surgical treatment only through the hernia sac (meshless repair according to Postempski technique)

    First digital study of the frontal sinus of stem-Canini (Canidae, Carnivora): evolutionary and ecological insights throughout advanced diagnostic in paleobiology

    Get PDF
    Introduction: The phylogenetic and ecological importance of paranasal sinuses in carnivorans was highlighted by several previous authors, mostly in extant species. Nevertheless, no specific study on this feature on extant canids, and no one on fossil representatives of the family, has been published up to now. Here, we analyze for the first time the paranasal sinus of extant and fossil canids through computed tomographic techniques to characterize them morphologically and morphometrically, making ecological inferences. Methods: To do so, we applied for the first time an innovative deformation-based morphometric approach. Results: The results obtained for extant species highlight a remarkable correlation between morphology and ecomorphotypes previously defined by some scholars (namely hypercarnivorous group-hunters; small-prey hypercarnivores, mesocarnivores, hypocarnivores). Our results thus support the direct relationship between diet preferences and the development of frontal sinus in canids. Regarding fossil specimens, we reconstructed for the first time the frontal sinus of three Eucyon species and compared it to those of living forms. Discussion: The best-preserved specimen, the only known cranium of Eucyon adoxus dated to the Late Pliocene of Saint-Estève (France), displayed similarities with hypercarnivorous group-hunter canids by the large sinus prominences. Given that the overall craniodental morphology of E. adoxus suggests that it acted as a small prey hypercarnivore-similar to extant Canis simensis-the aforementioned affinities might have evolved independently, in relation to high stresses during feeding. Overall, our study demonstrates that morphological inspection and deformation-based geometric morphometrics complement each other and allow a thorough investigation of sinus shape variability, thus enabling the study of sinus morphology in other fossil carnivorans with the ultimate goal of inferring their ecological preferences

    Effect of partial saturation on the stability of shallow foundations above the water table

    Get PDF
    Granular ‘cohesionless’ soils above the water table are partially saturated but are commonly assumed to be dry in geotechnical practice. Accordingly, ‘drained’ shear strength is calculated by replacing the ‘saturated’ effective stress with the total stress. The ‘dry soil’ assumption neglects the effect t of suction on shear strength and, as a result, geo-structures are over designed. To investigate the implications of this assumption, this paper presents an approach to calculate the bearing capacity of shallow foundations above the water table taking into account the effects of partial saturation. This approach is based on the upper bound theorem of plasticity. The bearing capacity of a strip foundation in granular soils is calculated and the solution obtained by taking into account the effects of partial saturation is compared with the solution obtained from the classical ‘dry’ approach

    New insights on hip bone sexual dimorphism in adolescents and adults using deformation-based geometric morphometrics

    Get PDF
    Morphological variation of the human pelvis, and particularly the hip bone, mainly results from both female-specific selective pressure related to the give birth of large-headed newborns, and constraints in both sexes for efficient bipedal locomotion, abdominal stability, and adaptation to climate. Hip bone morphology has thus been extensively investigated using several approaches, although the nuances of inter-individual and sex-related variation are still underappreciated, and the effect of sex on ontogenetic patterns is debated. Here, we employ a landmark-free, deformation-based morphometric approach to explore variation in modern human hip bone shape and size from middle adolescence to adulthood. Virtual surface models of the hip bone were obtained from 147 modern human individuals (70 females and 77 males) including adolescents, and young and mature adults. The 3D meshes were registered by rotation, translation, and uniform scaling prior to analysis in Deformetrica. The orientation and amplitude of deviations of individual specimens relative to a global mean were assessed using Principal Component Analysis, while colour maps and vectors were employed for visualisation purposes. Deformation-based morphometrics is a time-efficient and objective method free of observer-dependent biases that allows accurate shape characterisation of general and more subtle morphological variation. Here, we captured nuanced hip bone morphology revealing ontogenetic trends and sex-based variation in arcuate line curvature, greater sciatic notch shape, pubic body and rami length, acetabular expansion, and height-to-width proportions of the ilium. The observed ontogenetic trends showed a higher degree of bone modelling of the lesser pelvis of adolescent females, while male variation was mainly confined to the greater pelvis

    New Hoplitomeryx Leinders, 1984 remains from the Late Miocene of Gargano (Apulia, Italy)

    Get PDF
    Natural selection in isolated environments led to the positive selection of species bearing an extraordinary array of morphological traits and a very high grade of endemism. The unbalanced mammal assemblage found in the Upper Miocene karst infillings of the Gargano Peninsula (Southern Italy), and especially the intriguing ruminant Hoplitomeryx, is one of the best examples of fast, isolated evolution. Hoplitomeryx exhibits a peculiar combination of craniodental and postcranial characters, some of which are unique among the other ruminant families. For this reason, its phylogenetic position is still puzzling and far from being clarified. As such, every contribution to a more comprehensive knowledge of the genus is crucial to better understand the evolutionary process that led to such an advanced and peculiarly adapted ruminant. Here we report newly discovered dentognathic remains from the Gargano Peninsula, which are attributed to six different species of Hoplitomeryx on the basis of morphological and metrical evidence. Overall, our results show that the different species of Hoplitomeryx are clearly distinguished from each other on the basis of the dental morphology, which accounts for the high intraspecific and interspecific variability of the genus. In addition, we describe for the first time a new type of "Muntiacus-like" upper canine, with no-spiralization, more robust shaped and with more rounded anterior margin than the upper canines previously reported for Hoplitomeryx

    The evolution of the vestibular apparatus in apes and humans

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaPhylogenetic relationships among extinct hominoids (apes and humans) are controversial due to pervasive homoplasy and the incompleteness of the fossil record. The bony labyrinth might contribute to this debate, as it displays strong phylogenetic signal among other mammals. However, the potential of the vestibular apparatus for phylogenetic reconstruction among fossil apes remains understudied. Here we test and quantify the phylogenetic signal embedded in the vestibular morphology of extant anthropoids (monkeys, apes and humans) and two extinct apes (Oreopithecus and Australopithecus) as captured by a deformation-based 3D geometric morphometric analysis. We also reconstruct the ancestral morphology of various hominoid clades based on phylogenetically-informed maximum likelihood methods. Besides revealing strong phylogenetic signal in the vestibule and enabling the proposal of potential synapomorphies for various hominoid clades, our results confirm the relevance of vestibular morphology for addressing the controversial phylogenetic relationships of fossil apes

    Reassessment of the phylogenetic relationships of the late Miocene apes Hispanopithecus and Rudapithecus based on vestibular morphology

    Get PDF
    Late Miocene great apes are key to reconstructing the ancestral morphotype from which earliest hominins evolved. Despite consensus that the late Miocene dryopith great apes Hispanopithecus laietanus (Spain) and Rudapithecus hungaricus (Hungary) are closely related (Hominidae), ongoing debate on their phylogenetic relationships with extant apes (stem hominids, hominines, or pongines) complicates our understanding of great ape and human evolution. To clarify this question, we rely on the morphology of the inner ear semicircular canals, which has been shown to be phylogenetically informative. Based on microcomputed tomography scans, we describe the vestibular morphology of Hispanopithecus and Rudapithecus, and compare them with extant hominoids using landmark-free deformation-based three-dimensional geometric morphometric analyses. We also provide critical evidence about the evolutionary patterns of the vestibular apparatus in living and fossil hominoids under different phylogenetic assumptions for dryopiths. Our results are consistent with the distinction of Rudapithecus and Hispanopithecus at the genus rank, and further support their allocation to the Hominidae based on their derived semicircular canal volumetric proportions. Compared with extant hominids, the vestibular morphology of Hispanopithecus and Rudapithecus most closely resembles that of African apes, and differs from the derived condition of orangutans. However, the vestibular morphologies reconstructed for the last common ancestors of dryopiths, crown hominines, and crown hominids are very similar, indicating that hominines are plesiomorphic in this regard. Therefore, our results do not conclusively favor a hominine or stem hominid status for the investigated dryopiths.DATA AVAILABITY : The 3D mesh data have been deposited in MorphoSource, https://morphosource.org/ (Rudapithecus hungaricus: RUD:77 R: https://doi.org/10.17602/M2/M126214; RUD:77 L: https://doi.org/10.17602/M2/M126215; RUD:200: https://doi.org/10.17602/M2/M126216; Hispanopithecus laietanus: IPS:18000: https://doi.org/10.17602/M2/M126217; Nacholapithecus kerioi: KNM:BG:42744: https://doi.org/10.17602/M2/M166427; Oreopithecus bambolii: NMB:BAC:208: https://doi.org/10.17602/M2/M166428).The Agencia Estatal de Investigación; the Generalitat de Catalunya (CERCA Programme); the consolidated research groups 2017 SGR 86 and 2017 SGR 116 GRC; and the French Centre National de la Recherche Scientifique.https://www.pnas.orghj2022Anatom

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range η<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur
    corecore